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Venture Theory: A Model of Decision Weights

Recent years have seen a surge of interest in models of risky decision making. (For overviews,

see Schoemaker, 1982; Tversky & Kahneman, 1986; Fishburn, 1987; Machina, 1987; Weber &

Camerer, 1987). Much of this research attempts to develop prescriptively appealing axioms for

risky choice that can account for certain well-established paradoxes. In some cases, appeal is made

to additional, psychological arguments such as notions of regret (see e.g., Bell, 1982; LAoomes &

Sugden, 1982). The present paper does not follow an axiomatic approach; nor is our intention

prescriptive. Instead, we seek to develop a descriptive model that can account for choice behavior

in a wide range of situations involving risk and uncertainty.

An important difference between the nature of the payoffs and probabilities that characterize

most decisions is that whereas the former are typically tangible (e.g., money, goods, etc.), the

latter can only be understood as mental constructs. One cannot touch, feel, or see a probability. In

this paper we present a model of decision making called venture theory in which this distinction is

explicitly recognized. We model the subjective evaluation of decision outcomes by psychophysical

functions while the weights given to probabilities are conceptualized as the end result of mental

processes that reflect both cognitive and motivational factors. Specifically, venture theory uses the
,S.

value function proposed in Kahneman and Tversky's (1979) prospect theory and provides an

account of how decision weights are influenced by variables that are both cognitive and

motivational in origin. In common with many theories in which probabilities are "distorted (see,

e.g., Karmarkar, 1978; Quiggin, 1982), venture theory can be used to explain the well-known

choice paradoxes such as those proposed by both Allais (1953) and Ellsberg (1961). However,

such explanations are not the experimental focus of this paper. Instead we use venture theory to

explore the nature of probability x utility interactions.

The paper is organized as follows. We first discuss some of the issues underlying people's

use of probabilistic information in risky decision making. This leads to the development of the



4

*venture theory model of decision weights. By combining venture theory decision weights with the

value function of prospect theory (Kahneman & Tversky, 1979), we make a series of predictions

concerning attitudes toward risk and ambiguity as a function of different levels of probabilities and

payoffs. These predictions are then tested in two experiments. Finally, we discuss venture theory

in relation to (a) our own and other experimental findings, (b) alternative models of risky choice,

and (c) implications for further work.

Probabilities * decision weights

To motivate our theory, consider first the distinction between the value assigned to receiving an

outcome denoted x under conditions of both certainty and uncertainty. When certain of receiving

the outcome, assume that the value assigned to it is v(x) where v(.) represents a prospect theory

value function (Kahneman & Tversky, 1979).1 Assume further that under certainty of not

receiving the outcome its value is 0. Thus, it is reasonable to conclude that the value of receiving

the outcome under uncertainty lies somewhere between 0 and v(x). This, in turn, implies that

under uncertainty v(x) has been discounted by some factor or "decision weight" that is bounded

between 0 and 1. To those familiar with the axioms of decision theory, it seems natural to use

probability as a decision weight. However, this hides important psychological concerns. These

center on the meaning of probability, the effects of uncertainty or ambiguity about probability

estimates, possible effects due to the sign and/or size of outcomes, and the distinction between

certainty (i.e., probabilities of 1 or 0) and uncertainty (i.e., probabilities between 1 and 0).

The meaning of probability has long been controversial. Whereas subjectivists, following de

Finetti (1937) and Savage (1954), are willing to equate probabilities with the general concept of

"degrees of belief," we maintain that most people's intuitions about probabilities are more

narrowly equated with the concept of long-run relative frequencies (cf. Lopes, 198 1; Keren &

Wagenaar, 1987). In teaching probabilistic concepts, for example, most introductory statistics

texts use familiar gambling devices such as dice thereby implicitly, and often explicitly, motivating

N%



the concept of probability as the limit of long-run relative frequency. In addition, when students',
first study expected utility theory (von Neumann & Morgenster, 1947), many find the notion of

applying the expected utility principle to one-shot as well as multiple plays of a gamble e

counterintuitive. In other words, whereas the use of probability as a decision weight is intuitively

appealing when considering the value of multiple plays of a gamble, this notion does not have the

same appeal for single-shot gambles. To illustrate, consider the difference in observable outcomes ..

between playing, once and many times, a gamble characterized by a p-chance of winning $x and a..%

(Il-p) chance of $0. In the multiple-shot case, whereas many different outcomes are possible, it is

highly probable that the net outcome will be close to the expected value, and more so the -greater the

number of plays. Thus, the use of probability as a decision weight in characterizing the net

expected outcome does correspond to some physical reality. In contrast, a similar calculation in the

single-shot case has little meaning in that the extreme values of $x and $0 are the only two possible

outcomes. From a psychological viewpoint, therefore, there is greater uncertainty concerning the

outcome of a single gamble as opposed to the net outcome of multiple plays even when the
probability determining outcomes is the same in both cases. In what follows, we refer to this

additional source of uncertainty as outcoe uncertainty.

In experimental work on risky decision making, probabilities are typically provided or

assumed to be known with precision. However, this contrasts with experience in the real world

which is more commonly characterized by vagueness or ambiguity concerning probabilities.

M e a or siginally demonstrated by Ellsberg (1961), people do not weight known and

ambiguous probabilities equally in choice (see also Einhorn & Hogarth, 1985; 1986). Thus, any

theory of decision weights must also account for the effects of ambiguity or vagueness about

probabilities.
There is a common intuition that the nature of outcomes (i.e., sign and size of payoffs) can

affect the weight given to probabilities in decision making. Indeed, from a prescriptive viewpoint

an advantage of expected utility theory is that it exhorts people to assess probabilities and utilities

,.5',



independently in order to avoid the traps of "wishful thinking" or "persecution mania."

Descriptively, the nature of probability x utility interactions has been hard to specify from empirical

studies. Some researchers (e.g., Edwards, 1962) have argued for the existence of effects due to

sign of payoff but not size; however, since theories have not explicitly predicted when and where

such interactions might occur, the evidence for or against interactions is hard to evaluate. We shall

argue that payoffs do exert an influence on decision weights but that, in some circumstances, these

effects are offset by other variables.

Finally, we believe that there are important psychological differences between situations

involving uncertainty (i.e., probabilities between 0 and 1) and certainty (i.e., probabilities of 0 and

1). Specifically, we hypothesize that people's decision weights exhibit particular attracton toward

certainty of gaining rewards and aversion to certainty of incurring losses (cf. Kahneman &

Tversky, 1984).

The decision weight model

The process underlying venture theory is similar to the ambiguity model proposed by Einhom and

Hogarth (1985; 1986). See also Hogarth (1987). The key notion is that decision weights used to

discount values of outcomes for uncertainty are the end result of a process that involves first

anchoring on an estimate of probability and then adjusting this by imagining other possible values

for the weights. In the typical experimental task, the anchor is the probability supplied by the

experimenter; in more realistic situations, it could be a figure suggested by experience, an estimate

provided by an expert or from statistical data, and so on. The adjustment is the net effect of a

mental simulation process in which the decision maker "tries out" various weights suggested by

different possible scenarios.2

To illustrate, imagine a person faced with a .5 chance of winning $1,000 (and a .5 chance of

$0) in a simple one-shot gamble. First, note that this situation is characterized by outcome

uncertainty in that although the probability of winning is .5, the outcome can only be either $1,000

AA B Qv
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or $0. Indeed, it is the presence of outcome uncertainty that encourages mental simulation of I
different possible decision weights. Second, when faced with a gamble of this type one would not

necessarily expect that equal weight be accorded in imagination to values above and below .5. In

fact, assuming caution in the face of risk, more weight would be given to possible values below

rather than above .5. More generally, we shall assume that both the sign and size of the payoff

affect the extent to which differential weight is given to values above and below the anchor.

Finally, consider the situation where .5 is the best estimate of an ambiguous probability. Relative

to cases involving known probabilities, ambiguity would increase uncertainty thereby inducing

more simulation of alternative decision weights.

This process can be represented algebraically in the form

Z(PA) = PA + (kg-ks) (1)

where PA is the anchor, kg represents the values and weight accorded in the mental simulation to

values greater than the anchor, and k corresponds to the weighted values below the anchor.

To make the model operational, it is necessary to specify (1) how the anchor, PA, is

established, (2) what affects the amount of mental simulation (i.e., the ranges of alternative values

considered), and (3) what determines the sign or direction of the adjustment process.

(1) As implied in the example given above, when the probability of obtaining an outcome is

known, this forms the anchor. In ambiguous circumstances, the anchor is assumed to be some

initial value of the probability that is typically available to the decision maker. This may be a figure

based on historical data, provided by experts, or selected from memory.

(2) The amount of mental simulation is assumed to increase with both outcome uncertainty

and ambiguity. Consider first the effect of outcome uncertainty when there is no ambiguity about

probabilities. For a two-outcome gamble, there is no outcome uncertainty when the probability of

obtaining one of the outcomes is known to be either 0 or 1. For a probability of .5, however,
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outcome uncertainty is maximized. Thus both outcome uncertainty and mental simulation increase

from 0 to a maximum as the probability increases from 0 to .5 and decreases from 1 to .5. Since

ambiguity increases uncertainty about the probabilities, this, in turn, increases the amount of mental

simulation over and above the non-ambiguous case. In short, it is assumed that the amount of

simulation increases with the amount of perceived ambiguity. However, it is important to note that,

unlike outcome uncertainty, anchors of 0 or 1 do not imply lack of mental simulation in the

presence of ambiguity.

(3) The sign, or net effect of the adjustment process (i.e., kg - ks), reflects two factors.

These are (a) the location of PA, and (b) the relative weight given to imagined values above and

below the anchor. The location of PA affects the net effect of the adjustment process in that, if

PA =0, the adjustment must be nonnegative, and nonpositive if PA = 1. It also follows that for

small values of PA there is a greater range of values that can be imagined above the anchor than

below it; for large values of PA, it is the reverse.

Two kinds of variable can affect the weighting of values above and below the anchor. First,

there are individual differences. When assessing the chances of obtaining a good outcome (e.g., a

large sum of money), people may differ in the extent to which they imagine values above and I

below the anchor. Second, differential weight also reflects the context of the decision. In this

paper, we assume that people are cautious rather than reckless when taking decisions under

uncertainty (see, e.g., the literature on "defensive pessimism," Norem & Cantor, 1986a; 1986b).

For decisions involving good or positive payoffs, therefore, values greater than the anchor are

underweighted relative to those below. Conversely, bad or negative payoffs imply that greater

weight is accorded to values above rather than below the anchor. We further assume that the

absolute size of payoffs affects imagination. This means that, for-positive payoffs, as the stakes

increase more weight is given to possible values below the anchor; for negative payoffs, however,

increasing stakes imply that more weight is given to values above the anchor.

The assumptions concerning the sign and size of the adjustment in Equation 1, i.e.,

% : %. : :.? ?: .?: ?; : ? .?: . ?.: . . :. . .- -,.-..-.



9

(kg -ks), can be summarized by writing

kg = f (a, (, PA, P) (2a)

and

ks = g (o, 0, PA, X) (2b)

where both kg and k are increasing functions of both outcome uncertainty (d) and perceived I
ambiguity (0), kg is a decreasing function of PA but ks is an increasing function of PA, and p and

X are parameters representing the weight given in imagination to values above and below the

anchor, respectively. (As also assumed above, p and X are increasing functions of the absolute

sizes of payoffs).

Further specificaions. Since the above functions are loosely specified, we now consider

restrictions that correspond with the underlying psychological intuitions.

First, examine a situation i which there is no ambiguity and values above and below the

anchor are weighted equally in imagination. In the absence of ambiguity, recall that we have

already specified Z(PA) = 0 when PA = 0, and Z(pA) = 1 when PA = 1. However, how do other

values of PA relate to Z(pA)? When PA = .5, kg = k since the ranges of possible values above

and below the anchor are identical; this also implies that Z(PA) = .5 even though outcome

uncertainty is maximized. Now consider Z(PA) for values corresponding to PA between 0 and .5

- and note this is affected by two conflicting forces. First, as PA increases, so does outcome

uncertainty. This has the effect of increasing the difference between Z(PA) and PA (i.e., kg ks)

which must be positive since there are more values above the anchor than below; second, as PA

increases, the range of values above the anchor decreases relative to those below thereby decreasing

the difference between kg and ks.The net effect is that, for 0 < PA < .5, Z(pA) is a concave

function of PA. By an analogous argument it follows that, for .5 < PA < 1, Z(pA) must be a

convex function of PA" Thus, in the absence of ambiguity, when equal weight is given to values
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imagined above and below the anchor, the function relating Z(pA) to PA is concave below .5 and

convex above as illustrated in Figure Ia.

Insert Figure 1 about here

Now consider the case where PA = .5 and values below the anchor are weighted more

* heavily in imagination than those above. Here Z(PA) < PA since although the ranges of possible

values on both sides of the anchor are equal, those below are weighted more heavily. However,

there will be a point between PA = 0 and PA = .5 where Z(PA) = PA" This point, labeled Pc (to

denote "cross over") occurs when the additional weight given to values below the anchor (relative

to those above) exactly compensates for the fact that the range of possible values below the anchor

is smaller than that above such that kg = ks. Moreover, for PA < Pc, Z(PA) > PA since the greater

range of possible values above PA relative to those below "overcompensates" for the direction of

differential weighting. It also follows that as greater weight is accorded to values below rather than

above the anchor, the more the crossover point approaches 0. Figure lb shows the extrapolation

of this reasoning in graphical form. Following analogous arguments, Figure Ic shows that the

crossover point, PC, is greater than .5 if values above the anchor are weighted more heavily in

imagination than those below.

To model the effects of ambiguity, recall that this increases the amount of mental simulation

and thus the extent to which Z(pA) deviates from PA. First, consider the Z(pA) values associated

with anchors of 0 and 1. In the presence of ambiguity, these are adjusted, up for PA = 0, and

down for PA = 1. Moreover, the amount of the adjustment reflects the degree of perceived

ambiguity. (In thinking through this, ask yourself: Would you prefer having a "known zero"

chance of winning a prize as opposed to an "ambiguous zero" chance?) In the interest of

symmetry, assume that the amount by which Z(pA) overweights PA when PA = 0 is the same as

the amount of underweighting when PA = 1. Second, note that for values of PA below Pc, the

. -..- .-'. - .- , -- - ..- f ..., .---- .- *. - .. b- -, m - ' .i2. U. .. -,- .. -" -- .'..- - .k.
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function incorporating effects of ambiguity will lie above one that does not; for values above Pc, it

is the reverse. These effects are illustrated in the five panels of Figure 2 which show the effects of

ambiguity for different values of Pc.

Insert Figure 2 about here

'p

Whereas "venture functions" may take several forms, it is reasonable to restrict them in two

ways. First, there is a unique crossover point; second, for 0 < Pc < .5 and .5 < Pc < 1 the Z(PA)

values of complementary anchors, i.e., PA and (1-PA), do not sum to 1. For the former, Z(PA) +

Z(l-PA) < 1; for the latter, Z(PA) + Z(1-PA) > 1. Although not severe, these restrictions are

important in that nonadditive decision weights can be used to "explain" many anomalies of standard

choice theory.

Implications. There are several implications of the model. First, note that the venture

function is regressive with respect to PA" In general, for 0 < PA < 1, the function starts by

"overweighting," has a crossover point (Pc), and then "underweights" the anchor. The location of
the cross over depends on the relative weight given in imagination to values of possible decision

weights above and below the anchor. This, in turn, is assumed to depend on both the sign and size

of payoffs such that, for positive payoffs, Pc < .5 and is smaller the larger the stakes; for negative

payoffs, Pc > .5 and is larger the greater the absolute size of the payoff. Incidentally, it should be

-. noted that the venture function illustrated in Figure la is similar to the models proposed by both

Karmarkar (1978) and Quiggin (1982). In addition, by fitting responses to a series of questions

given in the 1950's to several illustrious subjects (including de Finetti and Malinvaud), Allais

(1986) has developed a three-parameter model that yields curves similar to those of venture theory.

In fact, his empirical results for positive payoffs indicate curves similar to that illustrated in Figure

lb.

Second, in the absence of ambiguity, the venture function, unlike the ir-function of prospect

Ia
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theory, is continuous between 0 and 1. Note, however, that the function is particularly steep as it

approaches both 0 and 1 thereby capturing the notions of attraction toward certainty of gaining

rewards and aversion to certainty of incurring losses.

Third, the extent to which Z(pA) deviates from PA over the range of the latter depends on

both outcome uncertainty and the amount of perceived ambiguity, i.e., the greater the mental

simulation induced by these factors, the greater the deviation.3

Fourth, except for cases where PA = 0 or .5 or 1, decision weights associated with

complementary probabilities do not sum to I. Z(pA) values are typically subadditive when decision

makers are confronted with gains (i.e., for 0 < Pc <.5), but superadditive in the face of losses

'(i.e., for 5 Pc < 1).

-Fifth, the model can be used to predict how attitudes toward risk and ambiguity vary as a

function of sign and size of payoffs as well as levels of probability. We now turn to these

predictions.

Attitudes toward risk and ambiguity

The predictions made below correspond to expectations concerning the modal behavior of subjects

since it is assumed that all subjects have the same attitude of caution ('defensive pessimism") in the

face of risk and ambiguity. Attitudes toward risk and ambiguity are defined with respect to specific

choices. Thus, a choice is said to be risk averse if a person prefers a sure amount equal to the

expected value of a gamble to the gamble itsel, and ambiguity averse if a gamble with a known

probability is preferred to one involving an uncertain probability that has been equated in other

respects with the known probability. By extension, the terms risk- and ambiguity seeking are the

contrary of risk- and ambiguity averse. The statement that, for example, risk aversion increases as

a function of a given variable, is taken to mean that, in a sample of individuals, the observed

proportion of risk averse choices increases with that variable.

It is instructive to consider predicted attitudes toward risk and ambiguity separately for gains

AI



13

and losses. For gains, there are two forces that induce tendencies toward risk aversion. These are

the concavity of the prospect theory value function, and the general underweighting of probabilities

implied by the venture function. Thus, risk aversion is predicted to increase as both levels of

probabilities and payoffs increase. That is, for 0 < pc < .5, whereas small probabilities can be

overweighted (thereby implying a force toward risk seeking), underweighting predominates as

probabilities increase -- see Figure lb. In addition, the effect of increasing payoffs is to lower Pc

such that the range of probabilities over which underweighting occurs is greater for large as

opposed to small payoffs. These predictions in respect of probabilities and payoffs are identified as

Predictions 1 and 2, respectively, and are summarized in Table J along with other predictions

detailed below.

Insert Table 1 and Figure 3 about here

The effects of payoff size on risk attitudes can be further illuminated by considering Figure

3a which shows three venture functions that differ only in their Pc values. These functions are

drawn to approximate venture functions applicable to small (Pc =- .5), intermediate (0 < Pc < .5),

and large (pc - 0) positive payoffs. As discussed above, the functions show that differences in

risk attitudes could exist between small and large payoffs. However, they also imply that

differences in risk attitudes due to size of payoff vary with probability level in that, excluding

extremely small and large probabilities, differences between the functions are greater for small as
opposed to large probabilities. In other words, venture theory predicts that differences in risk

attitudes between small and large payoffs are expected to decrease as probabilities increase

(excluding, of course, very large or small probabilities) -- Prediction 3.

Predictions concerning the effects of payoffs and probabilities on attitudes toward ambiguity

can be inferred by consulting Figure 2. Ambiguity aversion in the domain of gains is expected to:

(i) increase with probability level -- Prediction 4. Note that Figures 2b and 2c exhibit ambiguity
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seeking for low but not large probabilities; (ii) increase with payoff size -- Prediction 5. Observe

that ambiguity seeking decreases as Pc becomes smaller, and (iii) be more sensitive to payoff size at

low as opposed to high levels of probability -- Prediction 6. For Pc > .5, there are few differences

between Figures 2a, 2b, and 2c.

For losses, there are two forces that conflict in their impact on risk attitudes. On the one

hand, the convex nature of the prospect theory value function over losses implies risk seeking. On

the other, since Pc > .5 for losses, probabilities are generally overweighted thereby implying a

force toward risk aversion.

Effects of probabilities and payoffs on risk attitudes can be predicted by considering Figure

3b which shows three venture functions applicable to small (pc -. 5), intermediate (.5 < Pc < 1),

and large (pc - 1) negative payoffs. Examination of Figure 3b leads to the following predictions:

(i) decreasing risk aversion as probabilities increase -- Prediction 7; (ii) increases in risk aversion as

payoffs increase -- Prediction 8; and, since Figure 3b is a mirror image of Figure 3a, (iii) greater

effects of payoffs on risk attitudes at large as opposed to small probability levels -- Prediction 9.

By consulting Figures 2c, 2d, and 2e, the effects of payoffs and probabilities on attitudes

toward ambiguity in the domain of losses can be inferred. These are that ambiguity aversion is

expected to: (i) decrease as probabilities increase - Prediction 10; (ii) increase as absolute size of

payoffs increases -- Prediction 11; and (iii) be more sensitive to payoff size at high as opposed to

low levels of probability -- Prediction 12.

Finally, it is important to note that predictions concerning losses have been made in "mirror

image" fashion to those concerning gains. However, recall that contrary to attitudes toward risk

and ambiguity on the gain side, attitudes in respect of losses are postulated to result from

conflicting forces (i.e., the convex shape of the value function and general overweighting of

probabilities). As a consequence, one would expect the predicted modal patterns of choice to be

less evident for losses as opposed to gains.

To test predictions concerning the effects of payoffs and probabilities on risk attitudes, it is

p.!
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important to vary independently both payoffs and probabilities. To achieve this, two experiments

were performed. In the first, payoffs were varied at different probability levels; in the second,

probabilities were varied across two different payoffs levels (small and large). Ambiguity was also I
manipulated in the second experiment.

Task. The experimental stimuli were hypothetical gambles involving choices between, on

the one hand, a p chance at winning (losing) $x and a (l-p) chance of $0, and, on the other hand, a

riskless amount equal to the expected value of the gamble, i.e. p.$x. Three probability levels were

investigated, .10, .50, and .80 with three payoff levels corresponding to expected values of $2,

$200, and $20,000 (i.e., low, medium, and high payoffs). There were thus 9 choices to be made

in respect of gains (3 probability levels x 3 payoff levels) and 9 choices in respect of losses.

Subjects and Method. Subjects were 96 graduate and undergraduate students recruited

through advertisements on the university campus. They were paid at the rate of $5 per hour to

participate in this and other experiments on decision making in a laboratory setting. Each subject

responded to all 18 choices which were presented in random order in an experimental booklet.

There were 3 possible responses for each choice: prefer the gamble (risky choice); prefer the

riskless amount (i.e., sure thing); or indifference.

Results. Results are presented in Table 1. It is important to realize that probabilities and

payoffs were not varied factorially in this experiment and that the design implies a negative

correlation between payoff size and probability. For example, for the $20,000 sure win subjectsLI were faced with a. 10 chance of winning $200,000, a .50 chance of winning $40,000, and a .80

chance of winning $25,000. Thus, since probabilities have been held constant and outcomes

varied, the relevant comparisons are down the columns within each probability level. This means

that the data can only be used to make formal tests of Predictions 2 and 8 (see Table 1) concerning

the effects of payoffs on attitudes toward risk. However, the results can also suggest whether the
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predicted probability x payoff interactions occur (Predictions 3 and 9).

Insert Table 2 and Figure 4 about here

The results for gains demonstrate the predicted effect of size of outcomes on attitudes toward

risk (Prediction 2) and are illustrated in Figure 4a which shows, for each of the three probability

levels, the numbers of subjects choosing the sure thing at each level of the latter. Note that at each

of the 3 probability levels, risk averse behavior (i.e., proportion of subjects choosing the sure

thing) increases as payoffs increase ( p < .0001 by Cochran's test at all 3 probability levels).4 For

example, from the greater detail provided in Table 2, note that at the .10 probability level, 25

subjects prefer the sure thing at $2 and this number increases to 88 for $20,000. The same pattern

occurs at the .50 probability level (24 to 77), and again at .80 (34 to 66). lowever, at the .80

probability level there is little difference in risk attitudes between the sure things involving $200 and

$20,000. Note too, that although probabilities and payoffs were not varied factorially, the results

do suggest the presence of the predicted probability x payoff level interaction on risk attitudes, i.e.,

Prediction 3. Specifically, the differences between the numbers of subjects who are risk-averse at

the three payoff levels decrease as probabilities increase (see Table 2). For example, between the $2

and $200 sure thing conditions, there are an additional 50 subjects (i.e., 75-25) who become

risk-averse; however, the increases at the .50 and .80 levels involve 35 (i.e., 59-24) and 26 (i.e.,

60-34) persons, respectively.

For losses, the pattern of results is less apparent than for gains and is illustrated in Figure 4b.

However, risk averse behavior is observed to increase as payoffs increase (Prediction 8) and there

is suggestive evidence of the predicted interaction between payoff levels and probability (Prediction

9). These effects are demonstrated by the lack of an effect of payoff size on risk attitudes at the .10

probability level (Cochran's test, df=2, Q=2.48, p=. 2 8 9 ), but increasing risk-averse behavior (i.e.,

proportion of subjects choosing the sure thing) at .50 and .80 (p < .0005 by Cochran's test at both
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levels) -- see Table 2 and Figure 4b. Consider, for instance, the differences between the numbers

of subjects choosing the sure thing for the low and medium losses (21 vs. 40, and 10 vs. 31,

respectively). There is, however, no difference between the medium and high payoffs.

Expm ent2

Task. Subjects were required to rank 3 possible options. These were: (1) choosing a certain

sum (i.e. sure thing); (2) selecting a ball at random from an urn (designated #1) where the prize

was contingent on drawing a ball of a specified color (with zero otherwise) and where the

composition of the urn (numbers of balls and their colors) was known, i.e., choice with known

probability; and (3) selecting a ball at random from an urn (designated #2) where the prize was

contingent on drawing a ball of a specified color (with zero otherwise) but where the composition

of the urn was not specified, i.e., choice with ambiguous probability. To operationalize ambiguity

in the third option, subjects were told "Imagine that you have been allowed to view the contents of

Urn #2 for a few seconds. You estimate that it contains .... balls but are not too sure of your

estimate." The task was constructed so that, for each choice, the sure thing was equal to the

expected value of drawing a ball at random from the urn with known composition. Moreover, the

estimate of the number of winning balls in the ambiguous urn was equal to the number of winning

balls in the urn of known composition. 5

The design of the study involved a factorial arrangement of three within-subject variables;

size of payoffs, probabilities, and sign of payoffs. There were 2 levels of payoff, small ($1) and

large ($10,000); 3 probability levels, .10, .50, and .90; and versions involving both gains and

losses. Each subject therefore faced 12 choice situations (i.e., 2 x 3 x 2). The design of this ft

experiment therefore permits testing Predictions I through 12.

Subjects and Method. There were 146 subjects from the same population as Experiment 1,

recruited and remunerated in similar manner. Subjects responded to the stimuli presented on the

screen of a microcomputer. However, these were not all presented in sequence; instead, blocks of

,,,'.. ,. .'. '. ,.. .-.'.,. ., ,.., .' .. .- ... .,.... ... . . . .. .. .... . . . .. .. . .. , .. • . . . .. .
- .. , ... . . . .. " ' , .. :, : : - . ,,-'r_ '', ',," " - :- '" '',-.''." . .
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stimuli were interspersed between other decision-making tasks. For 82 of the subjects, the stimuli

were presented in the same random order; the remaining 64 subjects saw the stimuli in individually

randomized orders. Since this difference in method made no difference to results, it is ignored in

the subsequent analysis.

Results. Figures 5a and 5b summarize the results of the experiment by plotting the

percentage of subjects whose choices were risk- and ambiguity averse, respectively, as a function

of probability levels, sign of payoff (gain or loss), and size of payoff (large or small).

Insert Figures 5a and 5b about here

Consider the results in respect of risk attitudes toward gains. As shown in Figure 5a, these

conform with venture theory in that risk-averse behavior increases with both probabilities

(Prediction 1) and payoffs (Prediction 2), and differences in risk attitudes between the two payoff

conditions are greater at the low as opposed to the high probability levels (Prediction 3). For

example, with small payoffs ($1) 20% of subjects exhibit risk-averse behavior at the .10

probability level and this rises to 53% at the .90 level. However, the corresponding figures are

80% and 84% for large gains ($10,000). (Cochran's test shows significant effects across

probability levels for small gains, Q=40.29, df=2, p < .0001, but not large gains, Q=0.73, df=2,

p =. 694).6

Across probability levels, increases in ambiguity-averse behavior are also observed -- see

Figure 5b (p < .0001 by Cochran's test for both large and small gains). There are also small but

statistically significant effects due to payoff size (Cochran's test of differences between payoff sizes

at the. 10, .50, and .90 probability levels gave values, df= 1, of Q=3.46, p=.0 6 3; Q=6.82, p=. 0 09 ;

and Q=3.52, p=.061, respectively). However, there is no interaction between payoff size and

probabilities. Thus, whereas the data support Predictions 4 and 5, Prediction 6 is not validated.

For losses, the data summarized in Figures 5a and 5b show both decreasing risk and~i

C.
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ambiguity aversion as probabilities increase (p < .001 by Cochran's test for both large and small

losses), but no effects for differences in payoff size, and no probability x payoff interactions. 7

Thus, whereas Predictions 7 and 10 were validated, Predictions 8, 9, 11, and 12 were not.

Since, in this experiment, attitudes toward risk and ambiguity were simultaneously measured

within subjects, it is of interest to ask whether these attitudes were correlated. In general, the data

revealed no consistent pattern in that, on average, across all 12 conditions of the experiment,

subjects' attitudes toward risk and ambiguity only coincide (i.e., are both risk- and ambiguity

averse or risk- and ambiguity seeking) 55% of times. However, there are exceptions that fit the

modal pattern suggested by venture theory. For example, for large positive payoffs, 73% of

subjects were both risk- and ambiguity-averse at the high probability level (.90); conversely, for

low negative payoffs, 47% of subjects were both risk- and ambiguity seeking at the high

probability level.

Discussion of Experiments 1 and 2

In Experiment 1, risk attitudes were investigated for different payoffs holding probabilities

constant. In Experiment 2, attitudes toward both risk and ambiguity were investigated, and the

design permitted investigation of effects due to both probabilities and payoffs.

To summarize the results, the outcomes of Experiment 1 were consistent with venture

theory's predictions. Main effects of payoffs on risk attitudes were observed for both gains and

losses, and there was support for the predicted interaction between probabilities and payoffs, also

for both gains and losses. As also predicted, the modal pattern of results was more marked for

gains than for losses.

Results of Experiment 2 were more equivocal vis-A-vis the theory. Whereas the predicted

main effects of probabilities on attitudes toward both risk and ambiguity were observed for gains

and losses, this was not the case for payoffs. On the gain side, payoffs were seen to have

significant main effects on both attitudes toward risk and ambiguity; however, although attitudes

d,
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toward risk exhibited the predicted payoff x probability interaction, this did not occur for

ambiguity. For losses, there were no main effects of payoff on attitudes toward either risk or

ambiguity nor any payoff x probability interactions.

What is(are) the source(s) of the partial inconsistency in results between the two

experiments? Candidates for investigation include differences in the tasks, the fact that simple

choices do not always provide sensitive measures of attitudes toward risk and ambiguity, the

possibility that both tasks involved hypothetical gambles, and the role of individual differences. It

is well known that risk attitudes exhibit considerable variability across different tasks (Fischhoff,

Slovic & Lichtenstein, 1980) and this is probably also true of attitudes toward ambiguity.

It is important to emphasize that the venture theory predictions were made using only broad,

directional assumptions concerning the functional dependence of Pc on payoffs. However,

attitudes toward risk and ambiguity are quite sensitive to the location of Pc. To appreciate this,

reconsider Figure 3 which illustrates venture functions for extreme and intermediate payoffs. Note

from Figure 3 that, whereas the general nature of our predictions holds for differences in the Pc's

associated with payoffs, the effect of such differences in observable choice data is quite sensitive to

the actual magnitude of the differences between Pc's. In particular, small differences in Pc

associated with different levels of payoffs might not yield significant differences in attitudes toward

risk and ambiguity. An important issue for further work, therefore, is to determine the nature of

the relation between Pc and the different levels of positive and negative payoffs. For example, a

possible interpretation of Experiment 2 is that pc is much more sensitive to differences in payoff

levels for gains as opposed to losses.

Some results obtained here are consistent with others reported in the literature. Several

investigators, for example, have noted increasing risk aversion on the gain side associated with

increases in probability levels (see, e.g., McCord & de Neufville, 1984); others have found that

attitudes toward risk on the loss side are less sensitive to differences in probability levels than

occurs for gains (Cohen, Jaffray, & Said, 1985); and differences in risk attitudes due to the sign of
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payoffs have been noted in many studies. There is also other evidence that probability weighting I
functions differ in respect of losses and gains (see e.g., Marks, 1951; Irwin, 1953; Nygren &

Isen, 1985). However, in an attempt to calibrate prospect theory x-functions, Currim and Sarin

(1987) report data contrary to venture theory in that -functions for losses gave smaller 7E(p) values

at the same levels of p as -functions for gains. In calibrating these x-functions, it is noteworthy

that Currim and Sarin (1987) used questions involving consumer choices rather than

laboratory-style gambles. This therefore raises the important issue of how contextual variables

might affect venture functions.

General discussion

The experimental evidence supports a model that combines the value function of prospect theory

with venture theory decision weights. Our discussion is organized around three topics: (a) further

comments on our experimental evidence; (b) the relation of venture theory to other models of risky

choice; and (c) implications of venture theory for explaining other phenomena.

Experimental evidence. There were two areas in which the venture theory predictions were

not strongly supported by the data in this paper. First, although Experiment 1 showed the

predicted effects of payoff size on attitudes toward risk for losses, there was no effect in

Experiment 2. Other investigators have also reported conflicting evidence concerning the impact of

payoffs on decision weights (see, e.g., Goldstein, Levi, & Coombs, 1987). However, contrary

to previous experimental work aimed at detecting utility x probability interactions, the research

strategy adopted here was to use a theoretical model that explicitly suggested where such effects

would be most likely to occur. Moreover, this model suggested that, in terms of attitudes toward

risk and ambiguity, the net effect of different payoff levels on decision weights implies a highly

interactive pattern of outcomes. Recall too, that according to venture theory, there is a key

difference between risk attitudes toward gains and losses. For gains, two complementary forces

shape risk attitudes (i.e., concavity of the value function and the effects of caution on decision
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weights); however, for losses the forces implied by the value function and decision weights

conflict. Thus, by their very nature, attitudes toward risk on the loss side may be inherently

inconsistent At the very least, our analysis of the effects of payoffs on decision weights

illuminates the complexity of this phenomenon.

In this paper, the venture theory predictions assumed that all subjects had the same personal

disposition or attitude of caution in the face of risk. In other words, we were predicting modal

behavior under the assumption that most people approach risky situations from the viewpoint of

"defensive pessimism." However, it is more realistic to assume that people vary on a

pessimism-optimism continuum (Norem & Cantor, 1986a; 1986b). Indeed, as demonstrated by

Schneider and Lopes (1986) ( see also Lopes, 1987), when subjects are selected on the basis of

previously determined risk attitudes, the choices of"risk-averse" and "risk-seeking" subjects differ

systematically when faced with a new series of risky problems. Specifically, these investigators'

data are consistent with Lopes' (1987) two-factor theory whereby, for risk-averse subjects, risk

aversion in the domain of gains results from positive correlation between the two forces of

"security-potential" and "aspiration level;" however, these same two forces conflict in determining

attitudes toward losses. For risk-seeking subjects, on the other hand, it is the reverse: conflict on

the gain side, but no conflict concerning losses. Thus, unless one has prior knowledge concerning

the risk tendencies of subjects, analysis that assumes a modal attitude toward risk must be

incomplete.

It is straightforward within venture theory to model optimism (as opposed to caution) such

that the conflict between forces that produce risk attitudes reflect in the same way as in Lopes'

(1987) model. Within venture theory, one simply reverses the assumptions that determine the

location of Pc such that, for example, Figure Ic would depict an optimist's function for gains and

Figure Ib that for losses. This means that when these functions are combined with the prospect

theory value function, the shapes of the venture and value functions would both favor risk seeking

over losses but conflict with respect to risk attitudes toward gains. In a given population,

.. , . , *-/ , '., ... , ,- .; .. '. ; .* **..5 .. S ,. S :,. P*_ ., ,, %, " .0 _, - _.- ,._.._ -... ..-
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however, we note that it would be problematic to know the proportions of people who were

primarily optimistic, pessimistic or unstable in this respect. The risk-averse and risk-seeking

subjects examined by Schneider and Lopes (1986), it should be noted, were preselected from the

extremes of a large subject pool (greater than 1,000).

In Experiment 2, the second inconsistency with venture theory predictions was that

ambiguity was not seen to vary with payoff size for losses and to show only moderate effects for

gains. At first sight, this might imply that attitudes toward ambiguity are not sensitive to size of

payoff. However, in a recent study of professional actuaries, Hogarth and Kunreuther (1988)

varied probability levels, payoff size, ambiguity, and type of risk (independent versus correlated) in

a factorial design concerning the pricing of a warranty. In addition to significant main effects for

probability level and ambiguity, their data revealed a significant main effect for independent versus

correlated risks (which proxies for payoff size by varying the potential loss at stake) and an

interaction between payoff size and ambiguity. Thus, although similar effects were not found in

Experiment 2, it cannot be said that they do not exist. Moreover, in other studies of insurance

decision making, Hogarth and Kunreuther (in press) have found that attitudes toward ambiguity

are sensitive to the role a person takes in the situation, i.e., as the buyer or seller of insurance. It is

possible that attitudes toward ambiguity are more sensitive to contextual variables than differences

in payoff per se. Determining the relative impact of these variables is an important issue for future

work.

Relations to other models of risky choice. The idea that "distortions of probability" can be

exploited to explain deviations from expected utility theory is not new (see, e.g., Bernard, 1974).

However, little attention has been paid to date as to why decision weights differ from

probabilities. 8 Although Kahneman and Tversky (1979; 1984) have provided some

psychophysical arguments (see also Grossberg and Gutowski, 1987), Lopes (1987) points out

these arguments reduce decisions concerning risk to a series of psychophysical reactions and leave

no room for explanations of risky behavior that incorporate either emotive aspects such as fear or
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cognitive processes involving, say, imagination. In other words, models based entirely on

psychophysical notions would seem to eliminate a priori much that underlies the psychology of

risk.

In constructing venture theory, we have assumed it is useful to model the evaluation of

payoffs by a psychophysical function but have specifically conceptualized the determination of

decision weights as the outcome of a mental process that is affected by both cognitive and

motivational influences, i.e., imagination and payoffs. We believe that the roles of cognition and

motivation become particularly important as one moves from studying gambles in stylized

laboratory settings to decisions taken in more realistic settings where, although people may have

knowledge about payoffs, information about uncertainties or probabilities is typically incomplete

(March & Shapira, 1987).

Several other models involving decision weighting functions have attracted attention in the

literature. These include the work of Karmarkar (1978), Quiggin (1982), and Yaari (1987) ( for an

overview, see Fishburn, 1986; 1987). Moreover, most of these models explain the "standard"

paradoxes such as that of Allais (1953) (as can models using standard probabilities such as those of

Chew & MacCrimmon, 1979, and Machina, 1982). However, the decision weight functions

adopted by these researchers are restricted in ways that would not predict all the findings described

in this paper. In the models of both Karmarkar (1978) and Quiggin (1982), for instance, the

decision weight at p = .5 is constrained to equal .5. Like Tversky and Kahneman (1986), we also

doubt whether one can capture most of the richness of choice behavior by way of axiomatically

consistent theories of choice.9

As a guide to prescriptive decision making, the venture theory model has several unattractive

features. Recall, however, that our intent is not to prescribe, but to describe and understand. A

possibly disturbing feature of the model is that the venture function, Z(pA), is not necessarily a

monotonic function of PA such that it could on occasion predict violations of dominance in choice.

In fact, in choice problems where dominance relations are transparent, we do not believe that
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people will violate this normative principle (cf. Kahneman & Tversky, 1979). However, when the

relation is not transparent or people make independent judgments of the value of uncertain

outcomes, violations of dominance could still be expected to occur (for relevant experimental

evidence, see Goldstein & Einhorn, 1987).

Further implications. Whereas both attitudes toward risk and ambiguity and the nature of

probability x utility interactions were the experimental focus of this paper, it is important to

emphasize that venture theory can also "explain" the well-known choice paradoxes of Allais (1953)

and Ellsberg (1961). However, since these paradoxes can also be accounted for by many other

models, this no longer ranks as an important achievement (Hogarth, 1987). Of note, however, is

that since venture theory explicitly allows for the effects of size of payoff, it can also be used to

explain the fact that the rate of violation of the substitution axiom in the Allais paradox is greatly

reduced for small as opposed to large payoffs (see, e.g., Wothke, 1985).

The structure of venture theory also allows explanations of contextual effects on decision

making. To do this, however, it is first necessary to specify assumptions as to how, in specific

circumstances, context affects the location of Pc by inducing differential weighting in imagination

of possible values of decision weights above and below the anchor. In addition to the experimental

results reported in this paper, the assumptions concerning modal behavior that we adopted can also

be used to explain several puzzling results reported in the literature.

The simultaneous existence of gambling and the purchase of insurance has challenged many

theorists working within the expected utility framework- This phenomenon can be explained within

both venture theory and prospect theory by noting that small probabilities tend to be overweighted.

However, prospect theory can not easily account for the findings of Hershey and Schoemaker

(1980) who have shown systematic differences when the same economic choices are presented as

gambles, on the one hand, or insurance contracts, on the other. Specifically, the gambling context

induces less risk-averse behavior than insurance. Within venture theory, however, these findings

are easily accommodated by noting that people are liable to have different attitudes toward
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uncertainty when gambling as opposed to buying insurance even when economic incentives are

equated. Thus, since the social context of insurance suggests caution (cf. Hershey & Schoemaker,

1980), it is reasonable to assume that more weight is given in imagination to values of possible

decision weights above the anchor in the insurance as opposed to gambling scenarios such that

Pc(insurance) > Pc(gambling) (recall one is dealing with probabilities of losses).

Venture theory also promises to provide an attractive means of exploring other phenomena.

For example, when playing sequences of gambles people have been observed to change risk

attitudes as a function of experiencing wins or losses (Thaler & Johnson, 1986; McGlothin, 1956).

Given the relatively small amounts of money involved in such gambles, it seems implausible to

believe that this behavior can be explained by shifts in utility or value functions. In addition,

explanations that posit changing reference points become somewhat involved. Instead, it seems

more likely that past successes or failures lead to shifts in optimism or caution that affect the

differential accessibility of scenarios people can imagine resulting from future gambles. In venture

theory, differential weighting of such imaginary scenarios imply values of pc that can change from

trial to trial. Similarly, the puzzling effects of the manipulation of affect on risk attitudes might also

be amenable to analysis by considering the likely impact of affect on Pc (see, e.g., Isen & Geva,

1987, and references). We stress, however, that in suggesting the analysis of these topics by

means of venture theory, it is important to specify assumptions about differential weighting in

imagination and its impact of pc that can lead to experimental predictions. Given the flexibility

inherent in the specification of venture theory, "explanations" of existing phenomena are relatively

easy to construct.

One intriguing avenue of research is the role of individual differences in attitudes toward risk

and ambiguity. As noted above, the presence of individual differences was marked in the studies

reported here by considerable variation around the modal class of behavior predicted by venture

theory. Indeed, this is not unusual in models of risky decision making and several researchers go

so far as to report separate analysis for subjects who are predominantly risk-averse or risk-seeking

N I
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(e.g., Hershey & Schoemaker, 1985; Schneider & Lopes, 1986). To the extent that revealed Pc

values capture systematic individual tendencies, venture theory is capable of accounting for

individual differences. However, the problem, as in much research on this topic, is to find

variables that can be reliably related to individual differences as opposed to classifying subjects on

the basis of the very behavior being studied.

Finally, we note that the extensive literature on risky decision making relies heavily on

stylized experimental gambles and, in particular, the explanation of a limited number of

"paradoxical" findings. Indeed, an important cost of proposing a model of risky decision making

is that one must, at least, be able to explain this literature. However, there is now growing

awareness that the gambling metaphor of risky choice is limited in its application to many real

world situations (cf. Lopes, 1983; March & Shapira, 1987). Since venture theory models how

decision weights are affected by psychological constructs of emotion (e.g., caution) and cognition

(e.g., imagination), we believe it provides a useful structure for studying the impact of uncertainty

in a wide range of tasks both in and outside the psychological laboratory.

-w r 2r'.' ' d ,.,.e € e - ._, .2. ._ _.. o . , , . ._. . . . . . .,. . -. . -, , . . .



...

28

Footnotes

* This work was supported by a contact from the Office of Naval Research and a grant from the

Sloan Foundation. The authors are much indebted for comments on earlier versions of the

paper to William Goldstein, Stephen Hoch, Joshua Klayman, George Loewenstein, and Paul

Schoemaker. The comments and research assistance of both Brian Gibbs and Jay Koehler are

also much appreciated.

1 The characteristics of the prospect theory value function are: (i) outcomes are evaluated as gains

or losses relative to a reference point; (ii) the function is concave over gains but convex over

losses; and (iii) the function is steeper for losses than for gains. See Kahneman and Tversky

(1979).

2 The presentation and underlying rationale of the model are closely related to the development of

the ambiguity model presented in Hogarth (1987).

3 Note that in the case of multiple plays of a gamble, outcome uncertainty is reduced. Thus, in the

absence of ambiguity, Z(pA) -- > PA as the number of plays of the gamble increases. The

limit of PA would not, however, be reached in the case of ambiguity.

4 It is unclear how one should perform an analysis of variance with repeated measures on a 0-1

dependent variable. Thus, although we have performed several such analyses, we have adopted

the conservative strategy of testing our hypotheses by reporting the results of specific contrasts

based on Cochran's test. Substantive conclusions have not proved sensitive to the statistical

procedures adopted.

5 Note that to equate the same beliefs about probability levels in the corresponding ambiguous and

non-ambiguous conditions, we specifically endowed subjects in the ambiguous conditions with

specific probabilistic beliefs. e.g., "you estimate that it contains ......" (emphasis added here).

6 Once again, we describe the statistical tests of our hypotheses using Cochran's test. We also

analyzed these data using methods analogous to analysis of variance for categorical variables.

Whereas some doubts exist concerning the appropriateness of these types of analysis for our
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data, substantive conclusions were not affected.

7 Due to a programming error, responses concerning losses provided by 17 subjects were lost.

Data for losses therefore involve 129 as opposed to 146 subjects.

8 Note, however, that Rachlin et al. (1986) have analyzed prospect theory from a behaviorist

viewpoint and shown a correspondence between prospect theory's decision weight function and

behaviorist concepts.

9 See also comments by Tversky and Kahneman (1986, p. S259) concerning the "regret"

models of Bell (1982) and Loomes and Sugden (1982).
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Table 1

Sumnuary of venture theory predictions concerning attitudes toward risk and ambiguity

Gains

Attitudes toward risk

1. Main effect for probability: The proportion of risk averse choices is predicted to increase

as probabilities increase.

2. Main effect for payoffs: The proportion of risk averse choices is predicted to increase as

payoffs increase.

3. Probability x payoff interaction: Differences in risk attitudes between small and large

payoffs are expected to decrease as probabilities increase.

Attitudes toward ambiguity.

4. Main effect for probability: The proportion of ambiguity averse choices is predicted

to increase as probabilities increase.

5. Main effect for payoffs: The proportion of ambiguity averse choices is predicted to

increase as payoffs increase.

6. Probability x payoff interaction: Effects of payoff size on attitudes toward ambiguity are

predicted to be pronounced for small as opposed to large probabilities.

Losses

Attitudes toward risk.
7. Main effect for probability: The proportion of risk averse choices is predicted to decrease

as probabilities increase.

8. Main effect for payoffs: The proportion of risk averse choices is predicted to increase as

the absolute size of payoffs increases.

9. Probability x payoff interaction: Differences in risk attitudes between small and large

payoffs are expected to increase as probabilities increase.

Attitudes toward ambiguity.

10. Main effect for probability: The proportion of ambiguity averse choices is predicted to

decrease as probabilities increase.

11. Main effect for payoffs: The proportion of ambiguity averse choices is predicted to

increase as the absolute size of payoffs increases.

12. Probability x payoff interaction: Effects of payoff size on attitudes toward ambiguity are

predicted to be pronounced for large as opposed to small probabilities.

No: Since, contrary to attitudes in the domain of gains, revealed attitudes in the domain of losses

are postulated to result from conflicting sources, more confidence is accorded to observing the

predictions for gains as opposed to losses.
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Table 2

Experiment 1: Choices made by subjects in all conditions

Choices

Prblite: .10 .50 .80

Qptions: Sure Indif- Sure Indif- Sure Indif-

Bik iagference Ry ting ference Rik £liag ference

Sure win $2 62 25 9 57 24 15 38 34 24

$200 16 75 5 34 59 3 29 60 7

$20,000 5 88 3 16 77 3 26 66 4

83 188 17 105 160 21 93 160 35

SSure loss -$2 38 48 10 59 21 16 58 10 27

-$200 48 39 9 41 40 15 52 31 13

-$20,000 47 41 8 39 42 14 49 30 17

133 128 27 139 103 45 159 71 57

Cell entries are numbers of subjects choosing responses between a sure win (loss) and a gamble
with equal expected value. Thus subjects were faced with choices (risky option, sure thing, or
indifference) between, for example, $2 and .10 chance at $20, $2 and a .50 chance of $4, $2 and a
.80 chance of $2.50, and so on.
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Figure captions

Figure 1: Graphs of venture functions with variations in differential weighting given to

values imagined above and below the anchor: (a) equal weighting, Pc = .5;

(b) values below weighted more than those above, Pc < .5; and (c) values above

weighted more than those below, Pc > .5.

Figure 2: Graphs of venture functions showing effects of ambiguity (solid lines) compared

to no ambiguity (dotted lines). These are drawn for the cases where: (a) Pc =0;

(b) 0 < pc < .5; (c) Pc = .5; (d) .5 < Pc < 1; and (e) Pc = 1.

Figure 3: (a) Venture functions exhibiting qualitative differences between small (pc = .5),

intermediate (0 < pc < .5), and large gains (Pc = 0).

(b) Venture functions exhibiting qualitative differences between small (Pc = .5),

intermediate (.5 < Pc < 1), and large losses (Pc = 1).

Figure 4: (a) Experiment 1: Numbers of subjects choosing sure thing at different

probability levels -- Gains.

(b) Experiment 1: Numbers of subjects choosing sure thing at different

probability levels -- Losses.

Figure 5: (a) Experiment 2: Percentages of risk-averse subjects in different conditions.

(b) Experiment 2: Percentages of ambiguity-averse subjects in different

:onditions.
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